Judiciuos Guessing

1. Solving ODE's of the form

$$ay'' + by' + cy = p(t)$$

where $a, b, c \in \mathbb{R}$ and p(t) is a polynomial of degree n.

(a) If $c \neq 0$, initial guess is

$$\psi(t) = A_n t^n + A_{n-1} t^{n-1} + \dots + A_1 t + A_0$$

(b) If c = 0 and $b \neq 0$, initial guess is

$$\psi(t) = (A_n t^n + A_{n-1} t^{n-1} + \dots + A_1 t + A_0) t$$

(c) If c = b = 0, initial guess is

$$\psi(t) = (A_n t^n + A_{n-1} t^{n-1} + \dots + A_1 t + A_0) t^2$$

2. Solving ODE's of the form

$$ay'' + by' + cy = p(t)e^{\alpha t}$$

where $a, b, c, \alpha \in \mathbb{R}$ and p(t) is a polynomial of degree n.

(a) If α is not a root of the characteristic polynomial, initial guess is

$$\psi(t) = (A_n t^n + A_{n-1} t^{n-1} + \dots + A_1 t + A_0) e^{\alpha t}$$

(b) If α is a root of the characteristic polynomial with multiplicity $m_{\alpha} = 1$, initial guess is

$$\psi(t) = (A_n t^n + A_{n-1} t^{n-1} + \dots + A_1 t + A_0) t e^{\alpha t}$$

(c) If α is a root of the characteristic polynomial with multiplicity $m_{\alpha} = 2$, initial guess is

$$\psi(t) = (A_n t^n + A_{n-1} t^{n-1} + \dots + A_1 t + A_0) t^2 e^{\alpha t}$$

3. Solving ODE's of the form

$$ay'' + by' + cy = p(t)e^{\alpha t}\cos\beta t$$

or

$$ay'' + by' + cy = p(t)e^{\alpha t}\sin\beta t$$

where $a, b, c, \alpha, \beta \in \mathbb{R}$ and p(t) is a polynomial of degree n.

(a) If $\alpha + i\beta$ is not a root of the characteristic polynomial, initial guess is

$$\Psi(t) = (A_n t^n + \dots + A_1 t + A_0) e^{\alpha t} \cos \beta t + (B_n t^n + \dots + B_1 t + B_0) e^{\alpha t} \sin \beta t$$

(b) If $\alpha + i\beta$ is a root of the characteristic polynomial, initial guess is

$$\Psi(t) = t \left[(A_n t^n + \dots + A_1 t + A_0) e^{\alpha t} \cos \beta t + (B_n t^n + \dots + B_1 t + B_0) e^{\alpha t} \sin \beta t \right]$$